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CP 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
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Abstract
Two-dimensional superintegrable systems with one third-order and one lower
order integral of motion are reviewed. The fact that Hamiltonian systems with
higher order integrals of motion are not the same in classical and quantum
mechanics is stressed. New results on the use of classical and quantum third-
order integrals are presented in sections 5 and 6.

PACS numbers: 02.30.Ik, 03.65.Fd, 01.30.Cc

1. Introduction

The purpose of this paper is to present some new results and insights on superintegrable
systems in classical and quantum mechanics, involving integrals of motion that are cubic in
the momenta. We also present a review of this field with emphasis on the differences between
‘quadratic’ and ‘cubic’ integrability and superintegrability.

We recall that in classical mechanics a Hamiltonian system with Hamiltonian H and
integrals of motion Xa ,

H = 1
2gikpipk + V (�x, �p), Xa = fa(�x, �p), a = 1, . . . , n − 1, (1.1)

is called completely integrable (or Liouville integrable) if it allows n integrals of motion
(including the Hamiltonian) that are well-defined functions on phase space, are in involution
{H,Xa}p = 0, {Xa,Xb}p = 0, a, b = 1, . . . , n − 1 and are functionally independent ({,}p
is a Poisson bracket). A system is superintegrable if it is integrable and allows further
integrals of motion Yb(�x, �p), {H,Yb}p = 0, b = n, n + 1, . . . , n + k that are also well-defined
functions on phase space and the integrals {H,X1, . . . , Xn−1, Yn, . . . , Yn+k} are functionally
independent. A system is maximally superintegrable if the set contains 2n − 1 functions,
minimally superintegrable if it contains n + 1 such integrals. The integrals Yb are not required
to be in evolution with X1, . . . , Xn−1, nor with each other.
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The same definitions apply in quantum mechanics but {H,Xa, Yb} are well-defined
quantum-mechanical operators, assumed to form an algebraically independent set.

The best known examples of (maximally) superintegrable systems are the Kepler–
Coulomb [1, 2] system V (�x) = α

r
and the harmonic oscillator V (�x) = αr2 [3, 4]. It

follows from Bertrand’s theorem [5, 6] that these are the only two spherically symmetric
examples in Euclidean space.

In both cases the integrals of motion are first- or second-order polynomials in the momenta.
The Hamiltonians and integrals are the same in classical and quantum mechanics (after a
possible symmetrization).

A systematic search for superintegrable systems in two-dimensional Euclidean space E2

was started some time ago [7, 8]. Rotational symmetry was not imposed. The integrals were
assumed to be second-order polynomials in the momenta. Thus, the Ansatz (in quantum
mechanics) was

H = 1

2
(�p)2 + V (�x), �x = (x1, x2),

(1.2)

Xa =
2∑

i,k=1

{
f ik

a (�x), pipk

}
+

2∑
i=1

gi
a(�x)pi + φa(�x),

where { , } is an anticommutator and we put

pj = −ih̄
∂

∂xj

, L3 = x2p1 − x1p2. (1.3)

The commutativity requirement [H,Xa] = 0 implies that Xa must have the following form:

X = aL2
3 + b(L3p1 + p1L3) + c(L3p2 + p2L3) + d

(
p2

1 − p2
2

)
+ 2fp1p2 + φ(x, y), (1.4)

where a, . . . , f are constants (or X can be a first-order operator).
Using transformations from the Euclidean group E(2) (they leave the form of the

Hamiltonian (1.2) invariant) we can transform integral (1.4) into one of the four standard
forms. If one such operator X exists then the potential V (x1, x2) will allow the separation of
variables in Cartesian, polar, parabolic or elliptic coordinates, respectively. If two operators
{X1, X2} commuting with H exist, we obtain four families of superintegrable potentials [7, 8],
namely,

VI = α(x2 + y2) +
β

x2
+

γ

y2
, VII = α(x2 + 4y2) +

β

x2
+ γy,

VIII = α

r
+

1

r2

(
α

1 + cos(φ)
+

β

1 − cos(φ)

)
, VIV = α

r
+

1√
r

(
βcos

(
φ

2

)
+ γ sin

(
φ

2

))
.

(1.5)

Each of these potentials is multiseparable, i.e. allows the separation of variables in the
Schrödinger equation (and in the Hamilton–Jacobi equation) in at least two systems of
coordinates.

A similar search for superintegrable systems in three-dimensional Euclidean space E3

gave a complete classification of all ‘quadratically superintegrable’ systems in E3 [9, 10].
Since then many results have been obtained on superintegrable systems in En for n

arbitrary and for two-dimensional spaces of constant curvature, so-called Darboux spaces
(two-dimensional spaces with non-constant curvature allowing at least two Killing tensors)
for complex spaces etc [11–15].

The overall picture that emerges is that superintegrable systems with quadratic (or linear)
integrals of motion have the following properties that make them interesting from the point of
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view of physics and mathematics:

(1) All finite classical trajectories are closed (more generally, they are constrained to an n− k

dimensional manifold in phase space [16]).
(2) They are all multiseparable (in classical and quantum mechanics).
(3) Their quantum energy levels are degenerate.
(4) The Schrödinger equation for quadratically superintegrable systems in E2 is exactly

solvable and it has been conjectured that this is true in general [17]. The conjecture is
true in all cases so far studied.

(5) The same potentials are superintegrable in classical and quantum mechanics.
(6) The integrals of motion form non-Abelian algebras under commutation, or Poisson

commutation, respectively. These algebras may be finite-dimensional, or infinite-
dimensional Lie algebras. The infinite-dimensional ones have a special structure and
it is often advantageous to view them as polynomial algebras, more specifically quadratic
ones [18–20].

It would be interesting to establish which of the above properties hold for all
superintegrable systems and which are restricted to Hamiltonians of the form (1.1) with
quadratic integrals of motion. Other systems that have been studied include velocity-dependent
potentials [21–25] and particles with spin [26]. In this paper we review the case of a scalar
potential as in (1.1) but with third-order integrals of motion. We also present some new results.

2. Integrability with third-order integral of motion

In 1935 J Drach published two articles on two-dimensional Hamiltonian systems with third-
order integrals of motion [27]. The main features of these papers are:

(1) The author found 10 such integrable potentials, each depending on 3 constants, but not
involving any arbitrary functions.

(2) The results were obtained in classical mechanics and are in general not valid in quantum
mechanics.

(3) The space considered was a complex Euclidean space E2(C).
(4) The articles are very short and ‘condensed’. Basically they are research announcements,

but no detailed follow-up articles were published.
(5) Some assumptions were made in the calculation so it is not clear whether the obtained list

is complete.

More recently, it was shown by Rañada [28] and Tsiganov [29] that 7 of the 10 Drach potentials
are actually ‘reducible’. The 7 corresponding Hamiltonian systems are superintegrable, in that
they allow two second-order integrals. Their Poisson commutator is the third-order integral
found by Drach.

Since then many examples of systems with third- and higher order integrals have been
published, mainly in classical mechanics [30–34].

In 1998, J Hietarinta published a remarkable article ‘Pure quantum integrability’ [35] in
which he showed that potentials exist that are integrable in quantum mechanics but have free
motion as their classical limit. The integrals of motion are third- or higher order polynomials
in the momenta and the potentials have the form V (x, y) = h̄2f (x, y), where h̄ is the Planck
constant and f (x, y) remains finite in the limit h̄ → 0.

A systematic search for integrable and superintegrable systems with third order integrals
of motion in both classical and quantum mechanics was initiated in [36]. The problem was

3
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formulated in quantum mechanics; the classical case was considered as a limit for h̄ → 0.
The Hamiltonian and first integral have the form

H = 1

2

(
p2

1 + p2
2

)
+ V (x1, x2), (2.1)

X = 1

2

∑
j,k

fjk(x1, x2)p
j

1p
k
2 0 � j + k � 3, (2.2)

where pj are as in (1.3) and the potential V and functions fjk are to be determined. The
commutativity requirement [H,X] = 0 implies that for any potential the third-order integral X

will have the form

X =
∑

i+j+k=3

Aijk

{
Li

3, p
j

1p
k
2

}
+ {g1(x1, x2), p1} + {g2(x1, x2), p2}, (2.3)

where {,} is an anticommutator, L3 is the angular momentum, as in equation (1.3). The
constants Aijk and functions V, g1 and g2 are subject to further determining equations:

(g1)x1 = 3f1(x2)Vx1 + f2(x1, x2)Vx2 , (g2)x2 = f3(x1, x2)Vx1 + 3f4(x1)Vx2 ,
(2.4)

(g1)x2 + (g2)x1 = 2(f2(x1, x2)Vx1 + f3(x1, x2)Vx2 ,

and

g1Vx1 + g2Vx2 = h̄2

4
(f1Vx1x1x1 + f2Vx1x1x2 + f3Vx1x2x2 + f4Vx2x2x2)

+ 8A300(x1Vx2 − x2Vx1) + 2(A210Vx1 + A201Vx2). (2.5)

The functions fi are defined in terms of the constants Aijk as

f1 = −A300x
3
2 + A210x

2
2 − A120x2 + A030,

f2 = 3A300x1x
2
2 − 2A210x1x2 + A201x

2
2 + A120x1 − A111x2 + A021,

(2.6)
f3 = −3A300x

2
1x2 + A210x

2
1 − 2A201x1x2 + A111x1 − A102x2 + A012,

f4 = A300x
3
1 + A210x

2
1 + A102x1 + A003.

We can sum up the results on third-order integrability as follows.

(1) The leading part of the integral X lies in the enveloping algebra of the Euclidean Lie
algebra e(2).

(2) Even and odd terms in X commute with H separately. We require the existence of a
third-order integral. A second-order one of the form (1.4) may, or may not exist.

(3) The 10 constants and 3 functions g1, g2 and V are to be determined from the
(overdetermined) systems of 4 equations (2.4) and (2.5). The fact that the system is
overdetermined implies that V (x, y) will satisfy some compatibility conditions. Indeed,
one can obtain 1 linear third-order equation for V and 3 nonlinear ones [36]. The existence
of a third-order integral is hence much more constraining than the existence of a second-
order one (in agreement with Drach’s results).

(4) The classical and quantum cases differ. Indeed, the determining equation (2.4) is the
same in both cases, but equation (2.5) involves the Planck constant h̄. In the classical
limit h̄ → 0 it simplifies greatly (the right-hand side goes to zero).

Instead of attempting to find a general solution we turn to a simpler problem, namely that
of superintegrability. We shall consider potentials V (x, y) for which two integrals of motion
exist, one third-order one and one that is either a first, or a second-order polynomial in the
momenta.
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3. Systems with one first-order and one third-order integral

Let us now assume that Hamiltonian (2.1) allows a first-order integral of motion Y. This
means that the potential has a geometric symmetry: it is invariant either under rotations, or
translations in one direction. With no loss of generality we can consider just two representative
cases:

(1) V = V (r), Y = L3, r =
√

x2 + y2,
(3.1)

(2) V = V (x), Y = P2.

Equations (2.4) and (2.5) for the existence of a third-order integral X greatly simplify in both
cases.

Let us first consider classical mechanics, i.e. h̄ = 0 in equation (2.5). Solving systems
(2.4) and (2.5) for the above potentials, we obtain

V1 = α

r
, V2 = αr2, V3 = ax, V4 = a

x2
. (3.2)

All of these potentials are well known [1–8, 37] as quadratically superintegrable. Indeed, the
third-order integral in all these cases is the Poisson commutator of a second-order integral
with the square of the first-order one.

In quantum mechanics we again obtain the potentials (3.2) but in addition we obtain a
potential V (x) satisfying

h̄2(V ′(x))2 = 4V 3 + αV 2 + βV + γ ≡ 4(V − A1)(V − A2)(V − A3), (3.3)

where α, β and γ (and A1, A2, A3) are constants. Equation (3.3) is solved in terms of elliptic
functions. Depending on properties of the roots Ai and on the initial conditions, we obtain 3
types of solutions:

V = (h̄ω)2k2sn2(ωx, k), V = (h̄ω)2

2(cn(ωx, k) + 1)
,

(3.4)
V = (h̄ω)2 1

sn2(ωx, k)
,

where sn(ωx, k) and cn(ωx, k) are Jacobi elliptic functions. If two of the roots Ai coincide,
we get potentials expressed in terms of elementary functions:

V = (h̄ω)2

(cosh(ωx))2
, V = (h̄ω)2

(sinh(ωx))2
,

(3.5)

V = (h̄ω)2

sin2(ωx)
.

We see explicitly that for h̄ → 0 all these potentials vanish. Potentials (3.4) and (3.5) are
‘irreducible’ and genuinely superintegrable. The two algebraically independent integrals are

Y = P2, X = {
L3, p

2
1

}
+ {(σ − 3V )y, p1} +

{
−σx + 2xV +

∫
V (x) dx, p2

}
, (3.6)

σ = A1 + A2 + A3.
Even though the potentials V(x) in (3.4) and (3.5) are one-dimensional (depend on x

alone), their superintegrability is a two-dimensional phenomenon, since the integral X involves
rotations L3.
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4. Systems with one second and one third-order integral

Let us now assume that Hamiltonian (2.1) allows one second-order integral of motion Y. This
integral will have the form (1.4). As mentioned in the introduction, four classes of such
Hamiltonians exist [7, 8]. Here we shall restrict to one of the four classes, namely to potentials
allowing the separation of variables in Cartesian coordinates. Thus we have

Y = 1
2 (p2

1 − p2
2) + V1(x) − V2(y), V (x, y) = V1(x) + V2(y). (4.1)

We substitute the above potential into the determining equations (2.4) and (2.5) in order to
determine potentials that also allow a third-order integral. The obtained system of equations
is quite manageable and was analyzed by S Gravel [38].

The results in the classical and quantum cases are very different. To illustrate the
difference, let first consider an example. One particular solution of the determining system
(2.4), (2.5) is the potential

V (x, y) = ω2

2
y2 + V (x), (4.2)

where V (x) satisfies a fourth-order nonlinear ordinary differential equation

h̄2V (4) = 12ω2xV ′ + 6(V 2)′′ − 2ω2x2V ′′ + 2ω2x2. (4.3)

We mention that this equation is also obtained as a nonclassical reduction of the Bousinesq
equation [39, 40]. For h̄ �= 0 this equation is solved in terms of the Painlevé transcendent
[41] PIV

(
x,− 4ω2

h̄

)
. The classical limit is singular (h̄ → 0 reduces the order of the equation).

In the classical case we can reduce to quadratures and obtain a quartic algebraic equation for
V (x):

−9V 4(x) + 14ω2x2V 3(x) +

(
6d − 15

2
ω4x4

)
V 2(x)

+

(
3

2
ω6x6 − 2dω2x2

)
V (x) + cx2 − d2 − d

ω2

2
x4 − 1

16
ω8x8 = 0. (4.4)

For special values of the constants a, . . . , d, ω namely

c = 8ω8b3

36
, d = ω4b2

33
(4.5)

equation (4.4) has a double root and we obtain

V1,2 = ω2

18
(2b + 5x2 ± 4x

√
b + x2), V3 = V4 = ω2

2
x2 − ω2b

33
. (4.6)

A complete analysis of equations (2.4) and (2.5) is given in [38]. All together 8 classical
superintegrable systems that are separable in cartesian coordinates and allow at least one
third-order integral of motion exist. Three of them are reducible (the harmonic oscillator and
potentials VI and VII of equation (1.5)). The five irreducible classical potentials are

V = ω2

2
(9x2 + y2),

V = β2
1

√
|x| + β2

2

√
|y|,

V = a2|y| + b2
√

|x|,

V = ω2

2
y2 + V (x), V = a|y| + f (x),

where V (x) satisfies equation (4.4) and f (x) satisfies f 3 − 2bxf 2 + b2x4f − d = 0. The
quantum case is much richer: 21 superintegrable cases of the considered type exist, 13 of

6
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them irreducible. The potentials are expressed in terms of rational functions in 6 cases, elliptic
functions in 2 cases and Painlevé transcendents [41] PI , PII and PIV in 5 cases. Let us just
present the irreducible potentials.

Rational function potentials:

V = h̄2

[
x2 + y2

8a4
+

1

(x − a)2
+

1

(x + a)2

]
,

V = h̄2

[
1

8a4
(x2 + y2) +

1

y2
+

1

(x + a)2
+

1

(x − a)2

]
,

V = h̄2

[
1

8a4
(x2 + y2) +

1

(y + a)2
+

1

(y − a)2
+

1

(x + a)2
+

1

(x − a)2

]
,

V = ω2

2
(9x2 + y2),

V = ω2

2
(9x2 + y2) +

h̄2

y2
,

V = h̄2

[
9x2 + y2

8a4
+

1

(y − a)2
+

1

(y + a)2

]
.

Elliptic function potentials:

V = h̄2P(y) + V (x), V (x) is arbitrary,

V = h̄2(P (y) + P(x)), P (x) is a Weierstrass elliptic function.

Painlevé transcendent potentials:

V = h̄2
(
ω2

1PI (ω1x) + ω2
2PI (ω2y)

)
,

V = ay + h̄2ω2
1PI (ω1x),

V = bx + ay + (2h̄b)
2
3 P 2

II

((
2b

h̄2

) 1
3

x

)
,

V = ay + (2h̄2b2)
1
3

(
P ′

II

((−4b

h̄2

) 1
3

x

)
+ P 2

II

((−4b

h̄2

) 1
3

x

))
,

V = a(x2 + y2) +
h̄2

2

(
P ′

IV

(−8a

h̄2 x

)
− 1

2

√
8aP 2

IV

(−8a

h̄2 x

)
− 1

2

√
8axPIV

(−8a

h̄2 x

))
.

The occurence of Painlevé transcendents as superintegrable potentials seems somewhat
surprising. It is less so once we remember the relation between the Schrödinger equation and
the Korteweg–de Vries equation [42]. Solutions of the KdV include Painlevé transcendents.
Painlevé transcendent potentials have already occurred in other contexts [43–45].

5. Trajectories for the classical systems

The trajectories for all eight superintegrable classical potentials were presented in [46]. The
trajectories can be obtained by integrating the equations of motion and then eliminating the
time variable from the result. Alternatively, the trajectories can be obtained directly from
the integrals of motion. Indeed, in all cases we have

1
2p2

1 + f (x) = E1,
1
2p2

2 + g(x) = E2, (5.1)

X = µp3
1 + νp2

1p2 + ρp1p
2
2 + σp3

2 + φp1 + ψp2 = K, (5.2)

7
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where µ, . . . , σ are known low order polynomials in x and y, f (x), g(x), φ(x, y) and ψ(x, y)

are known functions and E1, E2 and K are constants depending on the initial conditions.
From equation (5.1) we express P1 and P2 in terms of E1, E2, f (x) and g(y) and substitute

into equation (5.2). This directly gives us an equation for the trajectory (not necessarily
in a convenient form). If the functions f (x) and g(y) satisfy f (x) � 0, g(y) � 0, for
x2 > x0, y

2 > y0 for some constants x0 and y0, then the motion will be bounded.
From the figures of [46] we see that the finite trajectories are all closed, as predicted by

the general theory.

6. Algebras of the quantum integrals of motion

The integrals of motion in quantum mechanics form associative polynomial (cubic) algebras
with respect to Lie commutation. The commutator relations in all cases are of the form

[A,B] = C, [A,C] = αB, [B,C] = βA3 + γA2 + δA + ε, (6.1)

where γ, δ and ε are polynomials in H (for the classical cubic algebras of Poisson brackets
see [46]).

Inspired by the work of Daskaloyannis et al on quadratic algebras [18, 47, 48] we construct
a realization of the cubic algebra (6.1) using a deformed oscillator algebra and Fock space
basis {bt , b,N}. We put

[N, bt ] = bt , [N, b] = −b, btb = (N), bbt = (N + 1), (6.2)

where (N) is the so-called structure function. To construct representations of the cubic
algebra we impose conditions on (N). We require that a natural number p should exist, such
that

(p + 1) = 0, (6.3)

and further we impose

(0) = 0, (x) > 0, x > 0. (6.4)

We put

A = A(N), B = b(N) + btρ(N) + ρ(N)b, (6.5)

where the functions A(N), b(N), ρ(N) and (N) are to be determined from the cubic algebra
(6.1).

The next step is to construct a finite-dimensional representation of this algebra with A,N

and K (the Casimir operator) diagonal. We obtain a realization of a parafermionic oscillator

N |k, n〉 = n|k, n〉, K|k, n〉 = k|k, n〉,
A|k, n〉 = A(k, n)|k, n〉,
A|k, n〉 =

√
δ(n + u)|k, n〉,

(0, u, k) = 0, (p + 1, u, k) = 0.

(6.6)

A complete discussion of this approach to quantum superintegrable systems with cubic
integrals of motion will be presented elsewhere.

Here we just present one example showing how one can obtain energy spectra. Let us
consider one of the rational quantum potentials of section 4, namely

V = h̄2

[
x2 + y2

8a4
+

1

(x − a)2
+

1

(x + a)2

]
. (6.7)

8
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The Casimir operator K and structure function (x) are in this case found to be

K = −16h̄2H 4 + 32
h̄4

a2
H 3 + 16

h̄6

a4
H 2 − 40

h̄8

a6
H − 3

h̄10

a8
, (6.8)

(x) =
(−h̄8

a4

)(
x + u −

(−a2E

h̄2 − 1

2

))(
x + u −

(
a2E

h̄2 +
1

2

))

×
(

x + u −
(−a2E

h̄2 +
3

2

)) (
x + u −

(−a2E

h̄2 +
5

2

))
. (6.9)

The condition (0, u, k) = 0 is now an equation for u and (p + 1, u, k) = 0 provides the
energy spectrum. In the case of the potential (6.7) the constant a can be real, or pure imaginary
(V (x, y) is real in both cases). The energy spectrum we obtain is

E = h̄(p + 2)

2a2
0

a = ia0, a0 ∈ R, p ∈ N,

E = h̄(p + 3)

2a2
a ∈ R, p ∈ N.

7. Conclusion

The main conclusion that we draw at this stage is that going beyond quadratic integrability for
scalar potentials opens new horizons and poses new questions.

One of the questions is: What does one do with integrals of motion that do not lead to
the separation of variable in the equations of motion? A partial answer is given in this paper
and is very different in classical and quantum mechanics. We have seen that the integrals can
be used to calculate trajectories directly without solving the classical equation of motion. In
quantum mechanics one uses the algebra of integrals of motion to obtain information about
energy spectra and wavefunctions.
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